卡塔尔迪(卡塔尔迪拜哪个有钱)
本文目录一览:
梅森素数的寻找历程
2300多年来,人类仅发现49个梅森素数,由于这种素数珍奇而迷人,因此被人们誉为 “数海明珠” 。自梅森提出其断言后,人们发现的已知最大素数几乎都是梅森素数,因此寻找新的梅森素数的历程也就几乎等同于寻找新的最大素数的历程。
梅森素数的探寻难度极大,它不仅需要高深的理论和纯熟的技巧,而且需要进行艰苦的计算。 在计算能力低下的公元前,人们仅知道四个2p-1型素数:3、7、31和127,发现人已无从考证。1456年,又一个没有留下姓名的人在其手稿中给出了第5个2p-1型素数:8191。而在梅森之前,意大利数学家卡塔尔迪(1548~1626)也对这种类型的素数进行了整理,他在1588年提出 和 也是素数,由此成为第一个在发现者榜单上留名的人。
手算笔录的时代,每前进一步,都显得格外艰难。1772年,在卡塔尔迪之后近200年,瑞士数学家欧拉(1707~1783)在双目失明的情况下,靠心算证明了 是一个素数。这是人们找到的第8个梅森素数,它共有10位数,堪称当时世界上已知的最大素数。欧拉还证明了欧几里得关于完全数定理的逆定理:所有的偶完全数都具有 2p-1(2p-1)的形式,其中2p-1是素数。这表明梅森素数和偶完全数是一一对应的。
100年后,法国数学家卢卡斯(1842~1891)提出了一个用来判别Mp是否为素数的重要定理——卢卡斯定理,为梅森素数的研究提供了有力的工具。1876年,卢卡斯证明 是素数,这是人们靠手工计算发现的最大梅森素数,长达39位。
1883年,俄国数学家波佛辛(1827~1900)利用卢卡斯定理证明了 也是素数——这是梅森漏掉的。梅森还漏掉另外两个素数: 和 ,它们分别在1911年与1914年被数学家鲍尔斯(1875~1952)发现。
卢卡斯第一个否定了 “M67为素数” 这一自梅森断言以来一直被人们相信的结论,但他未能找到其因子。直到1903年,才由数学家科尔(1861~1926)算出267-1=193707721×761838257287。1922年,数学家克莱契克(1882~1957)进一步验证了M257并不是素数,而是合数。
在手工计算的漫长年代里,人们千辛万苦,一共只找到12个梅森素数。 20世纪30年代,美国数学家莱默(1905~1991)改进了卢卡斯的工作,给出了一个针对Mp的新的素性测试方法,即卢卡斯-莱默检验法:Mp3是素数当且仅当Lp-2=0,其中L0=4,Ln+1=(Ln2 -2)modMp。这一方法在 “计算机时代” 发挥了重要作用。
1952年,美国数学家鲁滨逊(1911~1995)在莱默引导下将此方法编译成计算机程序,使用SWAC型计算机在几个月内,就找到了5个梅森素数: 、 、 、 和 。其后, 在1957年被黎塞尔(1929~ 2014)证明是素数; 和 在1961年被赫维兹(1937~ )证明是素数。
1963年,美国数学家吉里斯(1928~1975)证明 和 是素数。
1963年6月2日晚上8点,第23个梅森素数 通过大型计算机被找到。发现这一素数的美国伊利诺伊大学数学系全体师生感到无比骄傲,以致于把所有从系里发出的信件都敲上了 “211213-1是个素数” 的邮戳。
超级计算机的引入加快了梅森素数的寻找步伐,但随着指数p值的增大,每一个梅森素数的产生反而更加艰难。1971年3月4日晚,塔克曼(1915~2002)使用IBM360-91型计算机找到新的梅森素数 。而到1978年10月,世界几乎所有的大资讯机构(包括中国的新华社)都报道了以下消息:两名年仅18岁的美国高中生诺尔(1960~ )和尼科尔使用Cyber-174型计算机找到了第25个梅森素数 。
1979年2月,诺尔又独自发现第26个梅森素数 。
伴随数学理论的改善,为寻找梅森素数而使用的计算机也越来越强大,包括了著名的IBM360型计算机和超级计算机Cray系列。1979年4月,史洛温斯基使用Cray-1型计算机找到梅森素数 。使用经过改进的Cray-XMP型计算机在1982年至1985年间找到了3个梅森素数: 、 和 。但他未能确定M86243和M216091之间是否有异于M132049的梅森素数。
1988年,科尔魁特和韦尔什使用NEC-SX2型超高速并行计算机果然发现 。沉寂4年之后,哈威尔实验室(英国原子能技术权威机构)的一个研究小组宣布他们找到梅森素数 。
1994年1月10日,史洛温斯基和盖奇再次夺回发现已知最大素数的桂冠——这一素数是 。而下一个梅森素数 仍是他们的成果,史洛温斯基由于发现7个梅森素数,而被人们誉为 “素数大王” 。1996年发现的M1257787是迄今为止最后一个由超级计算机发现的梅森素数,数学家使用了Cray-T94,这也是人类发现的第34个梅森素数。 使用超级计算机寻找梅森素数实在太昂贵了,而且可以参与的人也有限,网格这一崭新技术的出现使梅森素数的搜寻又重新回到了 “人人参与” 的大众时代。20世纪90年代中后期,在美国程序设计师沃特曼和库尔沃斯基等人的共同努力下,建立了世界上第一个基于互联网的分布式计算项目——因特网梅森素数大搜索(GIMPS)。人们只要在GIMPS的主页上下载一个计算梅森素数的免费程序,就可以马上参加该项目来搜寻新的梅森素数。
1996年至1998年,GIMPS找到了3个梅森素数: 、 和 ,其发现者来自法国、英国和美国。
1999年6月1日,美国密歇根州普利茅茨的数学爱好者哈吉拉特瓦拉通过GIMPS项目找到第38个梅森素数 ,这是20世纪发现的最后一个梅森素数,也是人们知道的第一个超过100万位的素数。如果把它写下来的话,共有2098960位数字。
进入21世纪,随着个人计算机的进一步普及和计算速度的提升,人们又找到不少更大的梅森素数。加拿大志愿者卡梅伦在2001年11月找到 ,拉开了新世纪寻找梅森素数的序幕。 此后在2003年至2006年间,GIMPS又相继发现5个梅森素数: 、 、 、 和 ,最大素数纪录离1000万位大关越来越近。
2008年8月23日,美国加州大学洛杉矶分校的计算机专家史密斯终于发现超过1000万位的梅森素数 。 它有12978189位数,如果用普通字号将这个巨数连续打印下来,它的长度可超过50公里!这一成就被美国的《时代》杂志评为 “2008年度50项最佳发明” 之一,排名在第29位。
此后一年内,又有两个1000万位以上的梅森素数被德国和挪威的志愿者先后找出。 距史密斯的发现仅相隔两个星期,而2009年4月找到的 与史密斯发现的素数相比 “仅” 相差14万位数。
2013年1月,美国中央密苏里大学数学教授柯蒂斯·库珀领导的研究小组发现了第48个梅森素数 。 这一发现被英国《新科学家》周刊评为当年自然科学十大突破之一。 2016年1月7日,库珀又发现第49个梅森素数 274207281-1。这个超大素数有22338618位,是目前已知的最大素数。这已是库珀第四次通过GIMPS项目发现新的梅森素数。
拉齐奥队员名单及号码?
2015-2016赛季意大利足球甲级联赛拉齐奥球员名单阵容:
球衣号 球员 英文名 位置 生日 国籍 身高 体重
2 霍特 Wesley Hoedt 中后卫 1994-03-06 荷兰 192
3 德弗赖 Stefan de Vrij 后卫 1992-02-05 荷兰 189 82
4 帕特里 Patri 后腰 1993-04-17 西班牙 184 78
5 布拉夫海德 Edson Braafheid 后卫 1983-04-08 荷兰 176 71
6 詹蒂莱蒂 Santiago Gentiletti 后卫 1985-01-09 阿根廷 182 77
7 莫里森 Ravel Morrison 左前卫 1993-02-02 英格兰 175
8 巴斯塔 Dusan Basta 后卫 1984-08-18 塞尔维亚 183 72
9 F.乔尔杰维奇 Filip Djordjevic 前锋 1987-09-28 塞尔维亚 186 80
10 费利佩·安德森 Felipe Anderson 前卫 1993-04-15 巴西 175
11 克洛泽 Miroslav Klose 前锋 1978-06-09 德国 182 81
14 巴尔德·凯塔 Balde Keita 前锋 1995-03-08 西班牙 181 77
16 帕罗洛 Marco Parolo 前卫 1985-01-25 意大利 184 75
19 卢利奇 Senad Lulic 前卫 1986-01-18 波黑 183 75
20 卢卡斯·比利亚 Lucas Biglia 前卫 1986-01-30 阿根廷 169 67
21 米林科维奇 Sergej Milinkovic-Savic 前卫 1995-02-27 塞尔维亚 192
22 马尔凯蒂 Federico Marchetti 门将 1983-02-07 意大利 190 83
23 奥纳齐 Ogenyi Onazi 前卫 1992-12-25 尼日利亚 173 65
26 拉杜 Stefan Radu 后卫 1986-10-22 罗马尼亚 178 70
27 卡纳 Lorik Cana 前卫 1983-07-27 阿尔巴尼亚 185 77
29 孔科 Abdoulay Konko 前卫 1984-03-09 法国 175 77
32 卡塔尔迪 Danilo Cataldi 前卫 1994-08-06 意大利 180 70
33 毛里西奥 Mauricio 后卫 1988-09-20 巴西 185 83
44 普尔塞 Franjo Prce 后卫 1996-01-07 克罗地亚 183 77
55 圭里耶里 Guido Guerrieri 门将 1996-02-25 意大利 184 78
70 伊科诺米德斯 Chris Ikonomidis 前卫 1995-05-04 澳大利亚 180 80
87 坎德雷瓦 Antonio Candreva 前卫 1987-02-28 意大利 179 72
88 基什纳 Ricardo Kishna 前锋 1995-01-04 荷兰 183 77
99 贝里沙 Erit Berisha 门将 1989-03-10 阿尔巴尼亚 194 92
意大利拉齐奥队目前有哪些现役国脚球员
2015-2016赛季,最新一起的意大利国脚效力于拉齐奥的是前锋 坎德雷瓦 以及 中场 帕罗洛二人。
2015-2016赛季拉齐奥球员名单:
球衣号 球员 英文名 位置
1 贝里沙 Erit Berisha 门将
2 恰尼 Michael Ciani 后卫
3 德弗赖 Stefan de Vrij 后卫
5 布拉夫海德 Edson Braafheid 后卫
6 毛里 Stefano Mauri 前卫
7 费利佩·安德森 Felipe Anderson 前卫
8 巴斯塔 Dusan Basta 后卫
9 F.乔尔杰维奇 Filip Djordjevic 前锋
10 埃德森 Ederson 前卫
11 克洛泽 Miroslav Klose 前锋
13 孔科 Abdoulay Konko 前卫
14 巴尔德·凯塔 Balde Keita 前锋
16 帕罗洛 Marco Parolo 前卫
17 佩雷里尼亚 Bruno Pereirinha 前卫
18 詹蒂莱蒂 Santiago Gentiletti 后卫
19 卢利奇 Senad Lulic 前卫
20 卢卡斯·比利亚 Lucas Biglia 前卫
22 马尔凯蒂 Federico Marchetti 门将
23 奥纳齐 Ogenyi Onazi 前卫
24 莱德斯马 Cristian Ledesma 前卫
26 拉杜 Stefan Radu 后卫
27 卡纳 Lorik Cana 前卫
32 卡塔尔迪 Danilo Cataldi 前卫
33 毛里西奥 Mauricio 后卫
34 佩雷亚 Brayan Perea 前锋
39 卡万达 Luis Cavanda 后卫
44 普尔塞 Franjo Prce 后卫
55 圭里耶里 Guido Guerrieri 门将
77 斯特拉科沙 Thomas Strakosha 门将
78 通卡拉 Mamadou Tounkara 前锋
85 诺瓦雷蒂 Diego Novaretti 后卫
87 坎德雷瓦 Antonio Candreva 前卫
96 穆尔贾 Alessandro Murgia 前卫
意大利超级杯决赛求大家先容下??
意大利超级杯(意大利语:Super Coppa Italiana,英语:Italian Super Cup)是一项每年一度由意大利足球甲级联赛冠军对阵意大利杯冠军的足球锦标赛。 如果有一支球队同时夺得联赛及意大利杯冠军,则意大利杯亚军球队获得参赛资格。
新赛季意大利超级杯决赛在沙特打响,由联赛冠军尤文图斯对阵杯赛冠军拉齐奥。上半场,阿尔贝托为拉齐奥首开纪录,C罗劲射被扑出,迪巴拉补射建功,两队带着1-1的比分进入中场休息。易边再战,第73分钟,拉扎里右路传中,卢利奇后点凌空抽射,2-1。伤停补时阶段卡塔尔迪直接任意球打进死角绝杀对手。最终拉齐奥3-1战胜尤文,队史第五次夺得意大利超级杯冠军。
如何求出当2的n次方减去1的值等于质数时的n值?
2^n-1为素数时,成为梅森素数。以下是有关梅森素数的先容。以及人们计算它的历史。
十万美金的悬赏——互联网梅森素数大搜索
一、价值五万美金的素数
2000年4月6日,住在美国密歇根州普利茅茨的那扬·哈吉拉特瓦
拉(Nayan Hajratwala)先生得到了一笔五万美金的数学奖金,因为他
找到了迄今为止已知的最大素数,这是一个梅森素数:
2^6972593-1。
这也是大家知道的第一个位数超过一百万位的素数。精确地讲,如果
把这个素数写成大家熟悉的十进制形式的话,它共有两百零九万八千
九百六十位数字,如果把它以这个形式写下来,大约需要150到200篇
本文的篇幅。
可是哈吉拉特瓦拉先生并不是一个数学家,他甚至很可能对寻找
素数的数学理论一无所知——虽然这使他赢得了这笔奖金。他所做的
一切,就是从互联网上下载了一个程序。这个程序在他不使用他的奔
腾II350型计算机时悄悄地运行。在经过111天的计算后,上面所说的
这个素数被发现了。
二、梅森素数
大家把一个大于1的自然数叫作素数,如果只有1和它本身可以整
除它。如果一个比1大的自然数不是素数,大家就叫它合数。1既不是
素数,也不是合数。
比如说,你很容易就可以验证7是一个素数;而15是一个合数,因
为除了1和15外,3和5都可以整除15。根据定义,2是一个素数,它是
唯一的偶素数。早在公元前三百年的古希腊时代,伟大的数学家欧几
里德就证明了存在着无穷多个素数。
关于素数,有许多既简单又美丽,但是极为困难的,到现在还没
有答案的问题。其中有著名的哥德巴赫猜想,它是说任何一个大于6的
偶数,都能表示为两个奇素数之和。还有孪生素数问题。象5和7,41
和43这样相差2的素数对,被称为孪生素数。孪生素数问题是说:是不
是有无穷多对孪生素数?这里要顺便提一下的是,这些看起来很简单
的数知识题,它们的解决方法将一定是极其复杂的,需要最先进的数
学工具。如果你不是狂妄到认为几百甚至几千年来所有在这些问题上
耗费了无数聪明才智的数学家(有许多是非常伟大的)和数学爱好者
加起来都不如你聪明,就不要试图用初等方法去解决这些问题,徒费
时间和精力。
古希腊人还对另一种数感兴趣。他们将它称为完美数。一个大于1
的自然数叫完美数,如果它的所有因子(包括1,但不包括本身)之和
等于它本身。比如说6=1+2+3就是最小的完美数,古希腊人把它看作维
纳斯也就是爱情的象征。28=1+2+4+7+14是另一个完美数。欧几里德证
明了:一个偶数是完美数,当且仅当它具有如下形式:
2^(p-1)(2^p-1)
其中2^p-1是素数。上面的6和28对应着p=2和3的情况。大家只要找到
了一个形如2^p-1的素数,也就知道了一个偶完美数;大家只要找到所
有形如2^p-1的素数,也就找到了所有偶完美数。所以哈吉拉特瓦拉先
生不但找到了世界上已知的最大的素数,还找到了世界上已知的最大
的偶完美数。嗯,你要问,关于奇完美数又是怎么样的情况?回答是:
大家现在连一个奇完美数也没有找到过,大家甚至根本不知道是不是
有奇完美数存在。大家只知道,要是有奇完美数存在的话,它一定是
非常非常大的!奇完美数是否存在这个问题,也是一个上面所说的既
简单又美丽,但是极为困难的著名数知识题。
有很长一段时间人们以为对于所有素数p,
M_p=2^p-1
都是素数(注意到要使2^p-1是一个素数,p本身必须是一个素数,想
一想为什么?)但是在1536年雷吉乌斯(Hudalricus Regius)指出,
M_11=2^11-1=2047=23*89不是素数。
皮特罗·卡塔尔迪(Pietro Cataldi)首先对这类数进行了系统的
研究。他在1603年宣布的结果中说,对于p=17,19,23,29,31和37,
2^p-1是素数。但是1640年费尔马使用著名的费尔马小定理(不要和那
个费尔马大定理混淆起来)证明了卡塔尔迪关于p=23和37的结果是错
误的,欧拉在1738年证明了p=29的结果也是错的,过后他又证明了关
于p=31的结论是正确的。值得指出的是,卡塔尔迪是用手工一个一个
验算取得他的结论的;而费尔马和欧拉则是使用了在他们那时最先进
的数学常识,避免了许多复杂的计算和因此可能造成的错误。
法国神父梅森(Marin Mersenne)在1644年他发表了他的成果。他
宣称对于p=2,3,5,7,13,17,19,31,67,127和257,2^p-1都是
素数,而对于其它小于257的素数p,2^p-1都是合数。今天大家把形如
M_p=2^p-1的素数叫做梅森素数,M_p中的M就是梅森姓氏的第一个字母。
用手工来判断一个很大的数是否素数是相当困难的,梅森神父自
己也承认他的计算并不一定准确。一直要等到一个世纪以后,在1750
年,欧拉宣布说找到了梅森神父的错误:M_41和M_47也是素数。可是
伟大如欧拉也会犯计算错误——事实上M_41和M_47都不是素数。不过
这可不是说梅森神父的结果就是对的。要等到1883年,也就是梅森神
父的结果宣布了两百多年后,第一个错误才被发现:M_61是一个素数。
然后其它四个错误也被找了出来:M_67和M_257不是素数,而M_89和
M_107是素数。直到1947年,对于p=257的梅森素数M_p的正确结果才
被确定,也就是当p=2,3,5,7,13,17,19,31,61,89,107和
127时,M_p是素数。现在这个表已经被反复验证,一定不会有错误了。
下面是大家现在知道的所有梅森素数的列表:(大家注意到梅森
神父的名字不在上面——这种素数已经由他的名字命名了,就把荣誉
分给最后确认者吧。)
序号 p M_p的位数 相对应的 确认 确认人
完美数的 年代
位数
1 2 1 1 ---- ----
2 3 1 2 ---- ----
3 5 2 3 ---- ----
4 7 3 4 ---- ----
5 13 4 8 1456 佚名
6 17 6 10 1588 Cataldi
7 19 6 12 1588 Cataldi
8 31 10 19 1772 Euler
9 61 19 37 1883 Pervushin
10 89 27 54 1911 Powers
11 107 33 65 1914 Powers
12 127 39 77 1876 Lucas
13 521 157 314 1952 Robinson
14 607 183 366 1952 Robinson
15 1279 386 770 1952 Robinson
16 2203 664 1327 1952 Robinson
17 2281 687 1373 1952 Robinson
18 3217 969 1937 1957 Riesel
19 4253 1281 2561 1961 Hurwitz
20 4423 1332 2663 1961 Hurwitz
21 9689 2917 5834 1963 Gillies
22 9941 2993 5985 1963 Gillies
23 11213 3376 6751 1963 Gillies
24 19937 6002 12003 1971 Tuckerman
25 21701 6533 13066 1978 Noll Nickel
26 23209 6987 13973 1979 Noll
27 44497 13395 26790 1979 Nelson Slowinski
28 86243 25962 51924 1982 Slowinski
29 110503 33265 66530 1988 Colquitt Welsh
30 132049 39751 79502 1983 Slowinski
31 216091 65050 130100 1985 Slowinski
32 756839 227832 455663 1992 Slowinski Gage
33 859433 258716 517430 1994 Slowinski Gage
34 1257787 378632 757263 1996 Slowinski Gage
35 1398269 420921 841842 1996 GIMPS
36 2976221 895932 1791864 1997 GIMPS
37 3021377 909526 1819050 1998 GIMPS
38 6972593 2098960 4197919 1999 GIMPS
39 13466917 4053947
40 20996011 6320431
41 24036583 7235734
42 25964951 7816230 2005
是不是有无穷多个梅森素数呢?数学家们目前还无法回答这个问
题。
三、寻找更大的素数
为什么要寻找梅森素数?为什么要打破已知最大素数的纪录?这
有什么用处呢?
如果你所说的用处是指能够直接创造物质财富,那么我不得不告
诉你——梅森素数没有什么用处,多知道一个非常大的素数似乎也没
什么用处。即使大家知道了一个无比巨大的梅森素数,也不会使大家
的钱包增加一分钱(嗨等一等!如果你只对钱感兴趣的话,也请不要
立即撇下我的文章。我其实是说,我上面说的话要排除我在这篇文章
题目中提到的那十万美金的奖金——你的钱包也许会因此鼓起来的。
所以请耐心一点)。
但是人类并不只需要物质财富。博物馆里的钻石有什么用场呢?
为什么人类要收集它们?因为它们美丽而稀少。作为人类智慧的结晶,
素数、梅森素数和与它密切相关的完美数是非常美丽的。它们的定义
简单,却又如此神秘莫测,象欧几里德、笛卡尔、费尔马、莱布尼兹、
欧拉这样的伟大数学家都因为它们的美丽而对它作过大量研究;大家
也看到,两千多年来,经过无数代人的辛勤工作,大家一共只收集到
38个梅森素数,它们是非常稀少的。对于数学家来说,搜集素数、梅
森素数和完美数是和收集钻石一样富有乐趣的事情。
人类还需要荣耀——也许更胜于财富。在体育运动中,能够跑得
更快一点,跳得更高一点,难道真的有实际物质方面的用途吗?不,
大家喜欢接受挑战,大家希翼能赢。打破一个体育世界记录,攀登珠
穆朗玛峰,单身驾船横穿太平洋……,那是对人类体能极限的挑战;而寻
找更大的素数,则是一项对人类智慧的挑战。当大家完成了一项前所
未有的任务时,大家总会感到无比骄傲。1963年,当第23个梅森素数
被找到时,发现它的美国伊利诺斯大学数学系是如此地骄傲,以致于
把所有从系里发出的信件都敲上了“2^11213-1是个素数”的邮戳。
在欧拉证明M_31是素数以后,下一个最大素数的记录由兰德里
(Landry)于1867年获得:M_59/179951=3203431780337。这不是一个梅
森素数。这个记录保持了九年。
1876年爱德华·卢卡斯使用了一个比费尔马和欧拉的方法更先进
的手段,证明了M_127是一个素数。这个记录保持了七十五年。直到费
里叶(Ferrier)于1951年使用一部手摇计算机证明了(2^148+1)/17是一
个素数,它有41位数。
借助手摇计算机的方法要算作手工计算方法还是要算做计算机方
法,大概是可以探讨的问题。不过技术的发展一下子把这种争论变得
毫无必要。值得指出的是,在人类寻找大素数的旅途中,数学理论的
改善要远远比具有强大坚韧的计算能力重要得多。卢卡斯的方法在
1930年被勒梅(Lehmer)简化后,卢卡斯-勒梅测试成为现在寻找梅森素
数的标准方法。
(卢卡斯-勒梅测试:对于所有大于1的奇数p,M_p是素数当且仅当M_p
整除S(p-1),其中S(n)由S(n+1)=S(n)^2-2,S(1)=4递归定义。
4 14 194 37634 1416317954 2005956546822746114
这个测
试尤其适合于计算机运算,因为除以M_p=2^p-1的运算在二进制下可以
简单地用计算机特别擅长的移位和加法操作来实现。判断一个梅森数
是素数的方法比判断一个差不多大小的其他类型数是素数的方法要简
单得多,所以在寻找最大素数的过程中,大部分纪录都是梅森素数。)
在1951年米勒和维勒(Miller Wheeler)借助于EDSAC计算机(这
种计算机还不如大家现在使用的一般计算器,它只有5K的内存)发现
了长达79位的素数180(M_127)^2+1。这个记录还是没能保持多久。次
年罗宾逊应用SWAC计算机,在1952年初发现了第13和第14号梅森素数:
M_521和M_607,后面连续三个梅森素数也在同一年被陆续发现:M_1279,
M_2203和M_2281。
在那以后的年代里,为了打破巨大素数纪录而使用的计算机越来
越强大,其中有著名的IBM360型计算机,和超级计算机Cray系列。大
家可以参看上面的梅森素数表来了解这个竞赛过程。在此其间只有一
次一个不是梅森素数的素数坐上过“已知最大素数”的宝座,它是
39158*2^216193-1,在1989年被发现。1996年发现的M_1257787是迄今
为止最后一个由超级计算机发现的梅森素数,数学家使用了Cray T94。
然后,GIMPS的时代到来了。
四、GIMPS——互联网梅森素数大搜索
1995年程序设计师乔治·沃特曼(George Woltman)开始收集整理
有关梅森素数计算的数据。他编制了一个梅森素数寻找程序并把它放
在网页上供数学爱好者免费使用。这就是“互联网梅森素数大搜索”
计划(GIMPS,the Great Internet Mersenne Prime Search)。在这个
计划中,十几位数学专家和几千名数学爱好者正在寻找下一个最大的
梅森素数,并且检查以前梅森素数纪录之间未被探索的空隙。比如上
面的梅森素数表中,最后那个素数的序号是未知的,大家不知道第37
号梅森素数和它之间是否还存在着其他未被发现的梅森素数。
1997年斯科特·库尔沃斯基(Scott Kurowski)和其他人建立了“素数
网”(PrimeNet),使分配搜索区间和向GIMPS发送报告自动化。现在只
要你去GIMPS的主页下载那个免费程序,你就可以立即参加GIMPS计划
搜寻梅森素数。几乎所有的常用计算机平台都有可用的版本。程序以
最低的优先度在你的计算机上运行,所以对你平时正常地使用计算机
几乎没有影响。程序也可以随时被停止,下一次启动时它将从停止的
地方继续进行计算。
从1996年到1998年,GIMPS计划发现了三个梅森素数:M_1398269、
M_2976221和M_3021377,都是使用奔腾型计算机得到的结果。
1999年3月,在互联网上活动的一个协会“电子边界基金”(EFF,
Electronic Frontier Foundation)宣布了由一位匿名者资助的为寻找
巨大素数而设立的奖金。它规定向第一个找到超过一百万位的素数的
个人或机构颁发五万美金的奖金,这就是大家最一开始说到的哈吉拉
特瓦拉得到的奖金。后面的奖金依次为:超过一千万位,十万美金;
超过一亿位,十五万美金;超过十亿位,二十五万美金。
搜寻结果的验证和奖金的颁发是非常严格的。比如说,得到的结
果必须是显式的——你不能宣称你的结果是一个有一百个方程组成的
方程组的解,却不把它解出来。结果必须由另一台计算机独立验证。
所有这些规则都在EFF网站上进行了说明。
应该指出的是,通过参加GIMPS计划来获得奖金的希翼是相当小的。
哈吉拉特瓦拉使用的计算机是当时21000台计算机中的一台。每一个参
与者都在验证分配给他的不同梅森数,当然其中绝大多数都不是素数
——他只有大约三万分之一的可能性碰到一个素数。
下一个十万美金的奖金将被颁发给第一个找到超过一千万位的素
数的个人或机构。这一次的计算量将大约相当于上一次的125倍。现在
GIMPS得到的计算能力为每秒7000亿次浮点运算,和一台当今最先进的
超级矢量计算机,比如Cray T932的运行能力相当。但是如果GIMPS要
使用这样的超级计算机,一天就需要支付大约二十万美金。而现在他
们需要的费用,仅仅是支撑网站运行的费用,和总共几十万美金的
奖金罢了。
五、网上分布式计算计划
GIMPS只不过是互联网上众多的分布式计算计划中的一个,
GIMPS主页上就有这些计划的先容。
分布式计算是一门计算机学科,它研究如何把一个需要非常巨大
的计算能力才能解决的问题分成许多小的部分,然后把这些部分分配
给许多计算机进行处理,最后把这些计算结果综合起来得到最终的结
果。有时侯计算量是如此之大,需要全世界成千上万甚至更多台计算
机一起工作,才能在合乎情理的时间内得到结果。GIMPS计划就是在进
行这样的分布式计算。
但它并不是最著名的分布式计算计划。致力于寻找宇宙中智慧生
命的“搜寻地外文明计划”(SETI计划)中的SETI@HOME工程,已在全世
界招募了290万名(!)志愿者,利用屏幕保护程序来处理射电望远镜接
受到的大量的宇宙间传来的无线电信号。如果你参加这个计划,也许
有一天会在你的计算机上破译出外星人发来的问候呢。
你也可以用你的计算机空余的计算能力为人类征服癌症作出贡献。
英国科学家设计了类似SETI@HOME工程的分布式计算屏保,它从有关网
站下载数据,分析化学物质分子的抗癌性能,然后将分析结果通过互
联网传回给研究人员,作为研制新型抗癌药物的参考。这项工程将于
2001年4月3日在美国加利福尼亚州正式启动。
计算机硬件的更新令人目不暇接,上半年买的最新式的个人电脑,
在下半年就变成了大路货。三四年前的CPU,现在变得一钱不值——
也许不能这么说,你根本就买不到它们了——市面上最便宜的CPU也
要比它们强大得多。而一台普通的家用计算机连续运转五年也是没有
问题的。所以,对待计算机的最经济的态度就是:让它运转。
而人类还有那么多的东西需要计算,还有那么多的问题需要找到
回答,还有那么多的难关需要克服。大家需要越来越巨大的计算能力,
大家也拥有这样的计算能力,只是太多太多被白白地闲置浪费掉了。
互联网已经使大规模的分布式计算计划成为可能。现在,大家唯一需
要的,就是这个网每一个结点上计算机用户的意愿和信心了。
发表评论